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ABSTRACT

The cohesive energy of Fe as a function of structure, strain and magnetic state has

been computed using the full potential linearized augmented planewave method within the

framework of density functional theory and the generalized gradient approximation.

Calculations corresponding to uniaxial stress in the <100> direction reveal that the ideal

tensile strength of bcc Fe is ~14.2 GPa, and is determined by instability with respect to

transformation into an unstable, ferromagnetic fcc.  The low-energy fcc phase is a

modulated-antiferromagnetic fcc that is connected to bcc via a first-order magnetic

transformation, and does not compromise its ideal strength.
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1. INTRODUCTION

The mechanical strength of a crystalline solid is limited by the elastic stability of its

crystal lattice (Kelly and Macmillian 1986, Morris and Krenn 2000). The stress that is just

sufficient to cause instability forces the crystal to break or deform if it has not already done

so, and, therefore, defines the ideal strength.  Ab initio total energy calculations of the ideal

tensile strengths of unconstrained bcc metals show that they are weakest when pulled in a

<100> direction (Morris et al. 2000) (unsurprisingly, {100} is the dominant cleavage plane

in bcc).  There is a simple crystallographic reason for this behavior (figure 1(a)).  A relaxed

tensile strain along <100> converts the bcc structure into fcc at an engineering strain of

about 0.26 (the ‘Bain strain’).  By symmetry, both structures are unstressed, so the tensile

stress must pass through at least one maximum along the transformation path.  If we

assume a single maximum (the solid line in figure 1(b)) and fit the stress-strain curve with a

sinusoid that has the correct modulus at low strain, the ideal tensile strength in <100> is

approximately (Morris et al. 2000, Roundy et al. 2001)

σm ~ 0.08E100 (1)

in good agreement with ab initio calculations (for example, σm ~ 30 GPa for W (Roundy et

al. 2001)).
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Due to its importance in structural materials, there is an interest in extending this

analysis to the case of Fe; however, there is an obvious problem. The above analysis

assumes that the fcc phase is unstable with respect to tensile elongation in the <100>

direction, whereas the fcc phase in Fe is known to have an energy only slightly above that

of bcc, and is at least metastable at low temperature. In fact, the thermomechanical

treatments that are used to process structural steel rely on the ease of transforming it from

bcc to fcc and back again (Honeycombe and Bhadeshia 1995, Morris et al. 2001a). If we

assume a metastable fcc phase connected by a continuous strain-energy curve (the dotted

line in figure 1(b)), the tensile instability intrudes at a much smaller strain, and the ideal

strength should be only about 6 GPa (versus 12 GPa based on an unstable fcc).  This

number is too small to be credible.  Since tensile stresses that are several times the yield

strength are developed ahead of crack tips in elastic-plastic materials (McMeeking and

Parks 1979, Morris et al. 2001a), steels with yield strengths much above 1 GPa would

necessarily be brittle.  In fact, steels with much larger yield strengths have high fracture

toughness and considerable ductility (Honeycombe and Bhadeshia 1995).

A possible resolution of this paradox is suggested by the work of Herper et al.

(1999).  They computed the energies of Fe in various magnetic states and lattice strains.

Their calculations suggest that the energy of ferromagnetic Fe increases monotonically if it

is distorted toward an unstable, ferromagnetic fcc, which can be stabilized by transforming

it into an antiferromagnetic state.  We have elaborated on those calculations to clarify their

implications for the ideal strength.
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2. COMPUTATIONAL METHOD

Specifically, we calculated the ideal strength of Fe within the framework of density

functional theory (Hohenberg and Kohn 1964, Kohn and Sham 1965) using WIEN97

(Blaha et al. 1999), a Full Potential Linearized Augmented PlaneWave (FLAPW) code

(Singh 1994).  We employed the generalized gradient approximation (GGA) (Perdew et al.

1992) for the exchange-correlation energy because it is known to give the correct

ferromagnetic bcc groundstate for Fe (Singh et al. 1991).  The [Ne]3s2 states were treated

as core states using the relativistic Dirac equation, while 3p6 3d6 4s2 states were treated as

valence states using the scalar-relativistic approximation. We also included ‘local orbitals’

for the 3d and 3p states to increase the flexibility of the basis set and reduce linearization

errors (Singh 1994).

The radius of the ‘muffin tin’ was 2.0au, with 781 radial mesh points.  Our basis set

cut-off was at Rmt*Kmax=10 and the charge density was expanded up to Gmax=14 Ry1/2.  The

computations were done self-consistently until the energy converged to within

0.01mRy/atom.  We used the modified tetrahedron integration method of Blochl et al.

(1994) with between 196 and 286 k-points in the irreducible wedge of the Brillouin zone,

depending on the particular crystal structure.  The total errors, stemming from the choice of

basis set, Brillouin zone sampling, and neglect of spin-orbit coupling** are of the order of

0.1mRy/atom.
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3. RESULTS

Figure 2 shows the energy and the magnetic moment as functions of volume for the

bcc and fcc structures in the non-spin polarized (NM), ferromagnetic (FM) and anti-

ferromagnetic (AFM) states.  The figure also includes a double period anti-ferromagnetic

(DAFM) fcc structure with the spins on (200) planes oriented ↑↑↓↓.  This pattern

approximates the stable long period spin wave state, as discussed by Herper et al. (1999).

The calculations predict the correct ferromagnetic bcc ground state.  There is a slight over-

binding compared to experiment.  The calculated lattice parameter of the bcc phase is

2.827Å, approximately 1% smaller than experiment (Acet et al. 1994) while the bulk

modulus is 196 GPa, approximately 13% larger than experiment (Rayne and Chandrasekhar

1961).   The calculations identify two distinct ferromagnetic fcc phases, one with a small

volume and moment and another with larger values of both.  The DAFM structure is

preferred to either of these, suggesting that the lowest-energy fcc has an intermediate

magnetic structure.  In fact, small fcc particles of nearly pure Fe can be precipitated from

solution in Cu.  The fcc crystal has a spiral spin density wave and an energy-volume

relation similar to that of the DAFM structure as seen in figure 2 (Tsunoda 1989, Tsunoda

et al.1993, Knopfle et al. 2000).

Figure 3(a) shows the lattice energy as a function of engineering strain for a fully

relaxed tensile pull in the <100> direction (uniaxial stress), the load configuration that

minimizes the ideal tensile strength (Morris et al. 2000, Roundy et al. 2001, Morris et al.

2001b). The figure includes results for the AFM, DAFM, and two FM phases.  The results
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show that the ferromagnetic bcc phase deforms monotonically toward the high moment fcc

FM phase.  The strain-energy curve can be fit with a cosine function to within the estimated

error of the calculations.  The bcc elastic modulus governing a <100> strain (E<100> = 1/s11)

is given by the second derivative of this curve in the small strain limit, and is 141 GPa, in

good agreement with the experimental value of 144 GPa at 4K (Rayne and Chandrasekhar

1961).

The elastic stability of the bcc phase in quasistatic deformation was tested under the

thermodynamic criteria derived by Morris and Krenn (2000).  Elastic instability occurs at

an engineering strain of about 15%, very close to the inflection point on the strain-energy

curve.  The instability is with respect to deformation in tension, and should, therefore, lead

to cleavage fracture.  It is associated with the maximum in the Cauchy (true) tensile stress:

σ =
1
V

dF
dε
� 
� � 

� 
� � = 

1 + e
V

dF
de

(2)

where ε (e) is the true (engineering) strain, F is the Helmholtz free energy, and V is the

volume (Morris and Krenn 2000).  The Cauchy stress is plotted as a function of e in figure

3(b).  Its maximum, the ideal tensile strength, is 14.2 GPa, which is reasonably close to the

value predicted by equation (1).  This is, to our knowledge, the first detailed calculation of

the ideal strength of Fe, though other workers have computed the energy for tetragonal

structures with various c/a ratios (Herper et al. 2000, Sob et al. 1999), and one of our own

co-workers estimated the ideal strength with a modified LDA technique (Roundy and
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Cohen 1999).  The calculated value is for quasistatic deformation at 0K, and may be

decreased by dynamic effects such as soft phonons or spin waves that are not considered

here.

The data presented in figure 3(a) show that the three alternate fcc phases considered,

the AFM, DAFM and low-spin FM, are related to the equilibrium bcc by first-order phase

transformations.  Such phases could limit the strength if their energies dropped below that

of the parent bcc at small strain, since magnetic transitions might occur and trigger

structural instability.  However, the AFM, DAFM and low-spin FM states all have energies

significantly above that of the high-spin FM state at the point of instability (figure 3(a)).

While we have not tested additional complex magnetic structures, the energy of the DAFM

structure is only ~1 mRy above that of the non-collinear magnetic ground state of the fcc

crystal structure (Herper et al. 1999, Knopfle et al. 2000) while being ~ 6.5 mRy above the

high spin FM phase at the point of instability.  It is, therefore, likely that Fe remains

ferromagnetic to the point of elastic instability.

4. CONCLUSIONS

We conclude that Fe can be strong because its equilibrium bcc phase evolves

monotonically toward an unstable ferromagnetic fcc phase when it is strained in the <100>

direction, and reaches the limit of stability before the alternate, metastable fcc phases

become favored.  A delicate balance of crystal and magnetic structure makes it possible for
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bcc Fe to have good mechanical strength while simultaneously having the low-energy fcc

phase that is so beneficial to its metallurgical processing.
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FIGURE CAPTIONS

Figure 1. a) The bcc crystal structure becomes the fcc structure after fully relaxed

elongation along the <100> direction. b) The energy as a function of strain has an

extremum at the fcc structure which can be a local maximum (solid line) or minimum

(dashed line). Assuming sinusoidal form, the inflection point governing the ideal strength

falls at a much lower strain in the latter case, and the ideal strength is significantly less.

Figure 2. The energy and magnetic moment per atom as functions of volume for Fe in the

bcc (filled symbols) and fcc (open symbols) crystal structures for several magnetic states:

non-magnetic (NM) �, ferromagnetic (FM) �, anti-ferromagnetic (AFM) �, and double

period anti-ferromagnetic (DAFM) �. The discontinuity in the fcc FM curve separates two

distinct phases with different magnetic moments. The energy-volume relation for the

ground state spiral spin density wave of fcc Fe (Knopfle et al. 2000) is indicated by the

points labeled (+).  These are plotted relative to the minimum in the AFM curve to correct

for a small, consistent difference in the energies calculated by Knopfle et al. (2000).

Figure 3. a) Energy as a function of fully relaxed engineering strain in the <100> direction

for various magnetic phases: high-moment FM �, low-moment FM �, AFM �, and

DAFM �. The last data point on the right of each series corresponds to the fcc structure.

The different magnetic phases reach the fcc structure at different strains because they have

different equilibrium volumes.  Some of the energy minima are, in fact, slightly displaced
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from fcc because magnetic alignment breaks cubic symmetry (Herper et al. 1999).  The

bold line fits the high-moment data with the cosine function: 6.0 mRy * [1-cos (π e/.284)].

Elastic instability occurs very close to the inflection point in this curve.  b) The Cauchy

tensile stress calculated from the cosine fit by equation (2).  Its maximum is 14.2 GPa at the

tensile instability.


